Pi Josephson junction

A Josephson Junction is a voltage-to-frequency converter usefully sensitive to voltage, current and magnetic fields that is made of a superconducting wire interrupted by an insulating weak-link. A \pi Josephson junction is a specific example of a Josephson junction which has a Josephson phase φ of \pi in the ground state when no external current or magnetic field is applied.

Contents

Background

The supercurrent Is through a conventional Josephson junction (JJ) is given by Is = Icsin(φ), where φ is the phase difference of the superconducting wave functions of the two electrodes, i.e. the Josephson phase.[1] The critical current Ic is the maximum supercurrent that can flow through the Josephson junction. In experiment, one usually applies some current through the Josephson junction and the junction reacts by changing the Josephson phase. From the above formula it is clear that the phase φ = arcsin(I/Ic), where I is the applied (super)current.

Since the phase is 2\pi-periodic, i.e. \phi and \phi%2B2\pi n are physically equivalent, without losing generality, we restrict the discussion below to the interval 0 < φ < 2\pi.

When no current (I = 0) is passing through the Josephson junction, e.g. when the junction is disconnected, the junction is in the ground state and the Josephson phase across it is zero (φ = 0). The phase can also be \phi=\pi, also resulting in no current through the junction. It turns out that the state with \phi=\pi is unstable and corresponds to the Josephson energy maximum, while the state φ = 0 corresponds to the Josephson energy minimum and is a ground state.

In certain cases one may obtain a Josephson junction where the critical current is negative (Ic < 0). In this case, the first Josephson relation becomes

 I_s = -|I_c|\sin(\phi) = |I_c|\sin(\phi%2B\pi)

Obviously, the ground state of such a Josephson junction is \phi=\pi and corresponds to the Josephson energy minimum, while the conventional state φ = 0 is unstable and corresponds to the Josephson energy maximum. Such a Josephson junction with \phi=\pi in the ground state is called a \pi Josephson junction.

\pi Josephson junctions have quite unusual properties. For example, if one connects (shorts) the superconducting electrodes with the inductance L (e.g. superconducting wire), one may expect the spontaneous supercurrent circulating in the loop, passing through the junction and through inductance clockwise or counterclockwise. This supercurrent is spontaneous and belongs to the ground state of the system. The direction of its circulation is chosen at random. This supercurrent will of course induce a magnetic field which can be detected experimentally. The magnetic flux passing through the loop will have the value from 0 to a half of magnetic flux quanta, i.e. from 0 to Φ0/2, depending on the value of inductance L.

Technologies and physical principles

Historical developments

Theoretically, the first time the possibility of creating a \pi Josephson junction was discussed by Bulaevskii et al. ,[17] who considered a Josephson junction with paramagnetic scattering in the barrier. Almost one decade later, the possibility of having a \pi Josephson junction was discussed in the context of heavy fermion p-wave superconductors.[18]

Experimentally, the first \pi Josephson junction was a corner junction made of yttrium barium copper oxide (d-wave) and Pb (s-wave) superconductors.[10] The first unambiguous proof of a \pi Josephson junction with a ferromagnetic barrier was given only a decade later.[2] That work used a weak ferromagnet consisting of an copper-nickel alloy (CuxNi1-x, with x around 0.5) and optimized it so that the Curie temperature was close to the superconducting transition temperature of the superconducting niobium leads.

See also

References

  1. ^ B. D. Josephson (1962). "Possible New Effects in Superconducting Tunnelling". Phys. Lett. 1 (7): 251. Bibcode 1962PhL.....1..251J. doi:10.1016/0031-9163(62)91369-0. 
  2. ^ a b V.V.Ryazanov, V.A.Oboznov, A.Yu.Rusanov, A.V.Veretennikov, A.A.Golubov and J.Aarts (2001). "Coupling of two superconductors through a ferromagnet: evidence of a \pi-junction". Phys. Rev. Lett 86 (11): 2427–30. arXiv:cond-mat/0008364. Bibcode 2001PhRvL..86.2427R. doi:10.1103/PhysRevLett.86.2427. PMID 11289946. 
  3. ^ A. A. Bannykh, J. Pfeiffer, V. S. Stolyarov, I. E. Batov, V. V. Ryazanov, and M. Weides (2009). "Josephson tunnel junctions with a strong ferromagnetic interlayer". Phys. Rev. B 79 (5): 054501. Bibcode 2009PhRvB..79e4501B. doi:10.1103/PhysRevB.79.054501. 
  4. ^ J.W.A. Robinson, S. Piano, G. Burnell, C. Bell and M. G. Blamire (2006). "Critical Current Oscillations in Strong Ferromagnetic \pi Junctions". Phys. Rev. Lett 97 (17): 177003. arXiv:cond-mat/0606067. Bibcode 2006PhRvL..97q7003R. doi:10.1103/PhysRevLett.97.177003. PMID 17155498. 
  5. ^ T. Kontos, M. Aprili, J. Lesueur and X. Grison (2002). "Josephson Junction through a Thin Ferromagnetic Layer: Negative Coupling". Phys. Rev. Lett. 89 (13): 137007. Bibcode 2002PhRvL..89m7007K. doi:10.1103/PhysRevLett.89.137007. PMID 12225057. 
  6. ^ M. Weides, M. Kemmler, H. Kohlstedt, A. Buzdin, E. Goldobin, D. Koelle, and R. Kleiner (2006). "High quality ferromagnetic 0 and pi Josephson tunnel junctions". Appl. Phys. Lett. 89 (12): 122511. arXiv:cond-mat/0604097. Bibcode 2006ApPhL..89l2511W. doi:10.1063/1.2356104. 
  7. ^ O. Vavra, S. Gazi, D. S. Golubovic, I. Vavra, J. Derer, J. Verbeeck, G. Van Tendeloo, V. V. Moshchalkov (2006). "0 and \pi phase Josephson coupling through an insulating barrier with magnetic impurities". Phys. Rev. B 74 (2): 020502,. arXiv:cond-mat/0606513. Bibcode 2006PhRvB..74b0502V. doi:10.1103/PhysRevB.74.020502. 
  8. ^ Tsuei, C. C.; Kirtley, J. R. (2000). "Pairing symmetry in cuprate superconductors". Rev. Mod. Phys. 72 (4): 969–1016. Bibcode 2000RvMP...72..969T. doi:10.1103/RevModPhys.72.969. 
  9. ^ B. Chesca (1999). Annalen Physik (Leipzig) 8: 511. 
  10. ^ a b Van Harlingen, D. J. (1995). "Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for dx^2-y^2 symmetry". Reviews of Modern Physics 67 (2): 515. Bibcode 1995RvMP...67..515V. doi:10.1103/RevModPhys.67.515. 
  11. ^ Smilde, H. J. H. (2002). "d-Wave–Induced Josephson Current Counterflow in YBa_{2}Cu_{3}O_{7}/Nb Zigzag Junctions". Physical Review Letters 88: 057004. Bibcode 2002PhRvL..88e7004S. doi:10.1103/PhysRevLett.88.057004. 
  12. ^ Hilgenkamp, Hans; Ariando; Smilde, Henk-Jan H.; Blank, Dave H. A.; Rijnders, Guus; Rogalla, Horst; Kirtley, John R.; Tsuei, Chang C. (2003). "Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays". Nature 422 (6927): 50–3. Bibcode 2003Natur.422...50H. doi:10.1038/nature01442. PMID 12621428. 
  13. ^ Ariando (2005). "Phase-Sensitive Order Parameter Symmetry Test Experiments Utilizing Nd_{2-x}Ce_{x}CuO_{4-y}/Nb Zigzag Junctions". Physical Review Letters 94: 167001. arXiv:cond-mat/0503429. Bibcode 2005PhRvL..94p7001A. doi:10.1103/PhysRevLett.94.167001. 
  14. ^ Lombardi, F. (2002). "Intrinsic d-Wave Effects in YBa_{2}Cu_{3}O_{7-δ} Grain Boundary Josephson Junctions". Physical Review Letters 89: 207001. Bibcode 2002PhRvL..89t7001L. doi:10.1103/PhysRevLett.89.207001. 
  15. ^ J. J. A. Baselmans, A. F. Morpurgo, B. J. Van Wees, T. M. Klapwijk (1999). "Reversing the direction of the supercurrent in a controllable Josephson junction". Nature 397 (6714): 43–45. Bibcode 1999Natur.397...43B. doi:10.1038/16204. 
  16. ^ J-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux (2006). "Carbon nanotube Superconducting Quantum Interference Device". Nature Nanotechnology 1 (1): 53–9. Bibcode 2006NatNa...1...53C. doi:10.1038/nnano.2006.54. PMID 18654142. 
  17. ^ L. N. Bulaevskii, V. V. Kuzii, A. A. Sobyanin; Kuziǐ; Sobyanin (1977). "Superconducting system with weak coupling to the current in the ground state". JETP Lett. 25: 290–294,. Bibcode 1977JETPL..25..290B. 
  18. ^ V. B. Geshkenbein, A. I. Larkin, A. Barone (1987). "Vortices with half magnetic flux quanta in heavy-fermion superconductors". Phys. Rev. B 36: 235–238. Bibcode 1987PhRvB..36..235G. doi:10.1103/PhysRevB.36.235.